Infinitely divisible multivariate and matrix Gamma distributions
نویسندگان
چکیده
Classes of multivariate and cone valued infinitely divisible Gamma distributions are introduced. Particular emphasis is put on the cone-valued case, due to the relevance of infinitely divisible distributions on the positive semi-definite matrices in applications. The cone-valued class of generalised Gamma convolutions is studied. In particular, a characterisation in terms of an Itô-Wiener integral with respect to an infinitely divisible random measure associated to the jumps of a Lévy process is established. A new example of an infinitely divisible positive definite Gamma random matrix is introduced. It has properties which make it appealing for modelling under an infinite divisibility framework. An interesting relation of the moments of the Lévy measure and the Wishart distribution is highlighted which we suppose to be important when considering the limiting distribution of the eigenvalues.
منابع مشابه
Free Generalized Gamma Convolutions
The so-called Bercovici-Pata bijection maps the set of classical infinitely divisible laws to the set of free infinitely divisible laws. The purpose of this work is to study the free infinitely divisible laws corresponding to the classical Generalized Gamma Convolutions (GGC). Characterizations of their free cumulant transforms are derived as well as free integral representations with respect t...
متن کاملModeling of Infinite Divisible Distributions Using Invariant and Equivariant Functions
Basu’s theorem is one of the most elegant results of classical statistics. Succinctly put, the theorem says: if T is a complete sufficient statistic for a family of probability measures, and V is an ancillary statistic, then T and V are independent. A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics. In addition ...
متن کاملMoment properties of multivariate infinitely divisible laws and criteria for multivariate self-decomposability
Ramachandran (1969) [9, Theorem 8] has shown that for any univariate infinitely divisible distribution and any positive real number α, an absolute moment of order α relative to the distribution exists (as a finite number) if and only if this is so for a certain truncated version of the corresponding Lévy measure. A generalized version of this result in the case of multivariate infinitely divisi...
متن کاملMoment properties of multivariate infinitely divisible laws and criteria for self-decomposability
Ramachandran (1969, Theorem 8) has shown that for any univariate infinitely divisible distribution and any positive real number α, an absolute moment of order α relative to the distribution exists (as a finite number) if and only if this is so for a certain truncated version of the corresponding Lévy measure. A generalized version of this result in the case of multivariate infinitely divisible ...
متن کاملBeyond LDA: A Unified Framework for Learning Latent Normalized Infinitely Divisible Topic Models through Spectral Methods
In this paper we propose guaranteed spectral methods for learning a broad range of topic models, which generalize the popular Latent Dirichlet Allocation (LDA). We overcome the limitation of LDA to incorporate arbitrary topic correlations, by assuming that the hidden topic proportions are drawn from a flexible class of Normalized Infinitely Divisible (NID) distributions. NID distributions are g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 130 شماره
صفحات -
تاریخ انتشار 2014